

I.P.E.T N°132 "PARAVACHASCA"

MAQUINA HERRAMIENTA Y CONTROL DIMENSIONAL III

CURSO: SEXTO AÑO " A " **PROFESOR:** VICTOR R. CANEPARI.

<u>Tel: 3572-509583</u> email: <u>victorcanepari@hotmail.com</u>

SECUENCIA DIDACTICA NRO 4

<u>Objetivo del trabajo práctico:</u> Conocer los diferentes montajes en el torno paralelo y las diferentes herramientas de corte.

Fecha límite de presentación: 30 de junio de 2021

Criterios de evaluación:

Participación en las instancias y medios de consulta (clases virtuales, whatsapp).

Presentación en tiempo y forma de las actividades propuestas.

Recomendaciones del profesor: Asiste a las clases virtuales anunciadas desde el grupo de whatsapp. No dejes de consultar por los medios disponibles a tu docente sobre las dudas que pudieran surgir durante la resolución de la presente actividad.

Trata de tomar la fotografía de tu trabajo en un lugar iluminado.

No olvides poner tu nombre, apellido y curso en cada hoja del trabajo. Puedes presentar tu actividad también resuelta en formato digital (word o pdf).

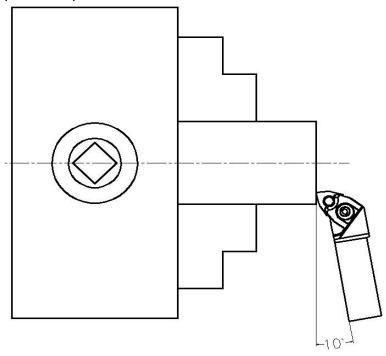
Recuerda ir anexando los resúmenes enviados por el docente a tu carpeta, en la medida que puedas ir imprimiéndolos.

Organiza tu biblioteca técnica de consulta con estos apuntes, trabajos y notas de clases (tanto en formato papel como digital). Seguramente ante futuros trabajos en el campo práctico esa información te resultará de utilidad.

Introducción

¡¡¡HOLA CHIC © S!!! En esta secuencia veremos las diferentes montajes de las piezas a trabajar en el torno paralelo, los que les muestro son los más usados, como así, también las herramientas de cortes que son las que usamos para ir sacando viruta al pieza, para dar la forma que necesitamos.

Montajes De La Pieza En El Torno


Montaie en el aire

Cuando la pieza es de poca longitud, de manera que no sobresale demasiado suspendida del extremo

del husillo, y su peso no es considerable, utilizamos este montaje.

En el mismo, la pieza se sujeta en uno solo de sus extremos, quedando el otro suspendido sobre la bancada para poder mecanizarla.

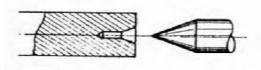
Los dispositivos de amarre son el plato universal de tres mordazas, el plato de cuatro mordazas o la pinza de apriete.

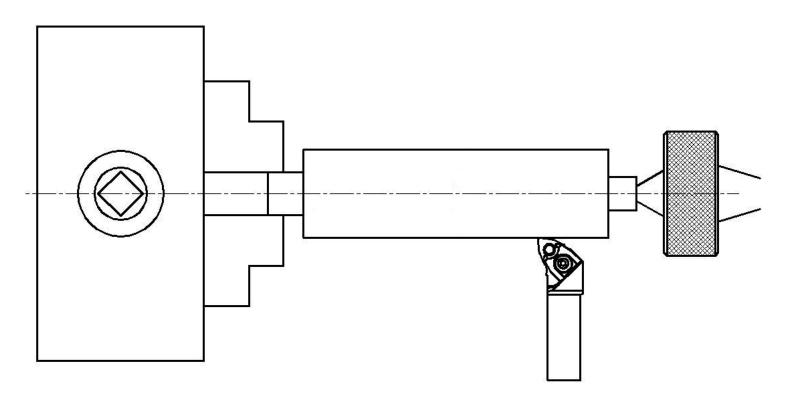
Observaciones:

Debe observarse que la pieza esté firmemente ajustada al dispositivo de amarre.

Girarla previamente con la mano para verificar si la pieza está centrada.

No dejar la llave de ajuste del plato colocada en el plato.


Montaje entre plato y contrapunta


En el caso de piezas delgadas o de longitud considerable, no es recomendable que quede un extremo suspendido, por lo cual se emplea este montaje.

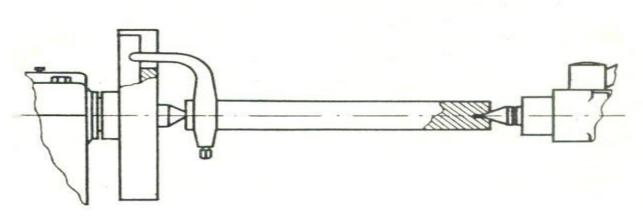
En este, un extremo queda tomado al plato, y el opuesto se apoya en un punto colocado en la contrapunta.

Previamente, en la pieza se le efectúa una perforación especial efectuada por una mecha de centrar, que le realiza una cavidad cónica de 60º en la cual apoya el punto.

Observaciones:

Debe verificarse que la pieza esté firmemente ajustada al plato, y la contrapunta correctamente bloqueada con sus dos frenos, sobre la bancada y el que fija la posición del manguito.

Observar que el punto giratorio esté constantemente girando en el mecanizado.


El desplazamiento del carro hacia la derecha no debe empujar la contrapunta.

Montaje entre puntas

En este montaje, la pieza se perfora en las dos puntas con mecha de centrar, y sacando el plato del husillo, se coloca un punto para torno en el agujero de cono Morse del eje de la máquina. El extremo izquierdo se apoya en dicho punto y se sujeta con una brida de arrastre, la cual se engancha con el plato liso de arrastre, haciendo girar el conjunto.

El otro extremo, se apoya en un punto en la contrapunta.

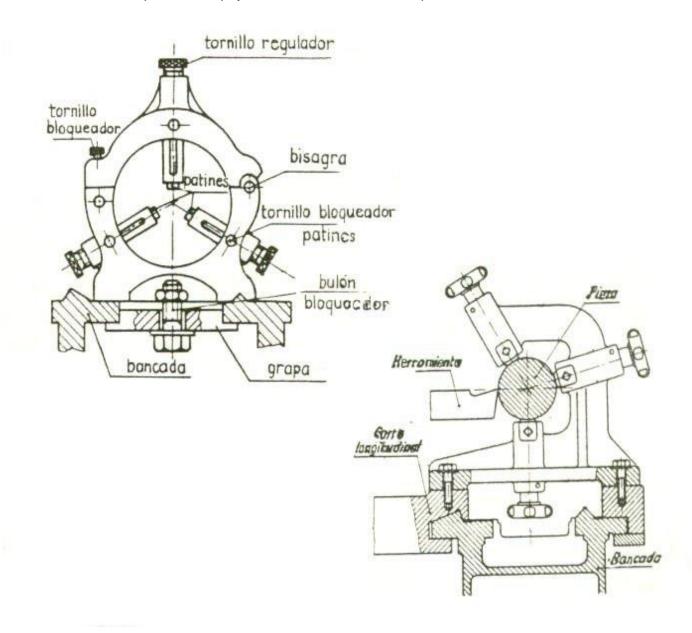
De esta manera, la pieza queda suspendida sobre la bancada, permitiendo el mecanizado longitudinal sin perder la concentricidad, ya que basta con cambiar de extremo la brida y girar la pieza. La alineación entre las perforaciones efectuadas en sus extremos no se pierde.

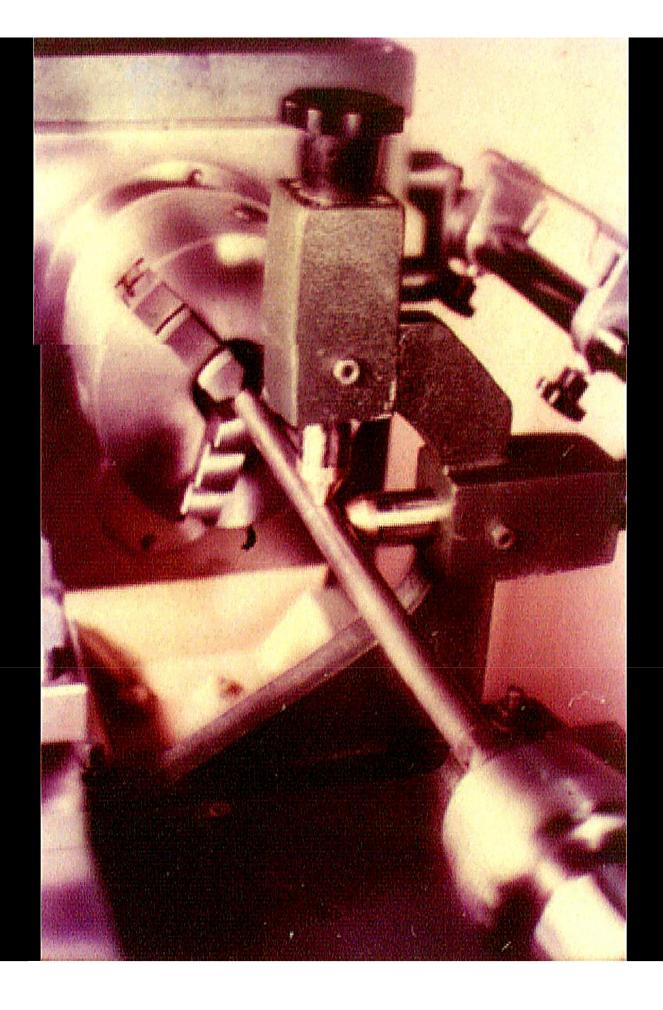
Observaciones:

Debe verificarse que la pieza esté firmemente ajustada a la brida, para que no patine, y la contrapunta correctamente bloqueada con sus dos frenos, sobre la bancada y el que fija la posición del manguito. Observar que el punto giratorio esté constantemente girando en el mecanizado.

El desplazamiento del carro hacia la derecha no debe empujar la contrapunta.

Tener especial cuidado con el área de giro de la brida, de manera que no enganche ni golpee nada.


Montaje con lunetas


En ocasiones, la pieza a mecanizar es larga y muy delgada. Al girar o al ser empujada por una herramienta de corte, la misma podría pandearse en su zona media, con riesgo para la herramienta y el operario. También para mecanizar interiormente piezas largas.

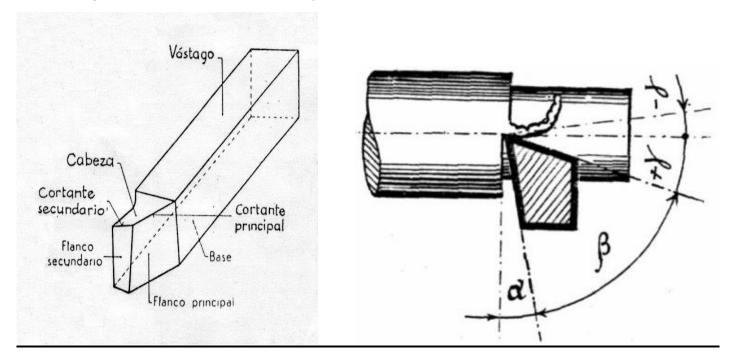
Por lo tanto, debe poder sujetarse por algún medio. La forma es colocar lunetas donde se apoye la pieza.

Las lunetas fijas, tienen tres o cuatro puntos de apoyo y se colocan sujetas a las guías de la bancada por una grapa y tuerca inferior.

En cambio la móvil, se atornilla sobre el carro acompañando al mismo en su desplazamiento, ofreciendo dos o tres puntos de apoyo, siendo la herramienta el punto faltante.

Herramientas De Corte

Para extraer las partes sobrantes de material, empleamos útiles o herramientas de corte.


Existe una amplia variedad de las mismas. En este estudio, observaremos los dos tipos más utilizados en la industria: las herramientas de corte integrales y los portainsertos.

Dentro de las primeras, encontramos las herramientas de corte fabricadas de acero aleado al cobalto, llamados aceros súper rápidos.

Poseen entre un 4% y un 18% de Co en su composición, lo que le da una relativa dureza para trabajar materiales ferrosos y una importante resistencia a la temperatura.

Su punto débil es que cuando pierden su filo, se deben reafilar, perdiendo su perfil original y con la consecuente pérdida de tiempo de horas-hombre y horas-máquina.

En las siguientes ilustraciones, observamos las partes principales de una herramienta integral, como los distintos ángulos de incidencia (α), de filo (β) y de ataque (Υ) de una herramienta.

En la actualidad, las herramientas integrales están cayendo en desuso y son reemplazadas por los insertos y portainsertos

Veamos algunas definiciones.

Insertos

Las plaquitas de corte que empleamos en el mecanizado de metales, están constituidas fundamentalmente por carburo de tungsteno y cobalto, incluyendo además carburo de titanio, de tántalo, de nobio, de cromo, de molibdeno y de vanadio. Algunas calidades incluyen carbonitruro de titanio y/o de níquel.

La forma, el tamaño y la calidad de la plaquita, están supeditados al material de la pieza y el tipo de mecanizado que voy a realizar.

Los mismos, cuenta en su cara superior con surcos llamados rompevirutas, con la finalidad de evitar la formación de virutas largas.

Portainsertos.

Este punto es de vital importancia, junto con sujeción del porta en la máquina, ya que determinará la correcta estabilidad de la plaquita que está sometida a los esfuerzos del mecanizado.

El tamaño y la forma del inserto, más el ángulo de posición definen el porta plaquitas correspondiente. Este selección también debe garantizar que no entorpezca el libre flujo de virutas, la mayor versatilidad posible y el mínimo de mantenimiento.

También es importante el tamaño del porta plaquitas. Generalmente, se selecciona el mayor tamaño posible, proporcionando la base más rígida para el filo y se evita el voladizo que provocaría vibraciones.

ACTIVIDADES

De acuerdo a lo presentado en esta secuencia, realiza una resumida narración de lo que has interpretado sobre los diferentes tipos de montajes y verificaciones a tener en cuenta, diferentes tipos de herramientas de corte e insertos.

SI HAY ALGO QUE NO ENTIENDEN!!! NO SE DESESPEREN!!! Y CONSULTEN AL PROFE.

BUENA SALUD Y HASTA PRONTO!!!