IPET 132	2 PARAVACHASCA
ASIGNATURA	QUÍMICA ANALÍTICA 5to B
DOCENTE	GIGENA SERGIO
CURSO	5 AÑO B
TEMA	OXIDO REDUCCIÓN
OBJETIVOS	Realizar cálculos de óxido reducción.
	Trabajar adecuadamente con las reglas de
	asignación.
	Hacer uso correcto de las magnitudes y
	unidades más utilizadas en la química
	analítica.
	anamisai
CRITERIOS DE EVALUACIÓN	Tu correcta participación en los grupos
	de consulta.
	Comunicarte con tu docente para aclarar
	dudas.
	Prolijidad en la entrega de las
	actividades, pasar las actividades a la
	carpeta, colocar nombre en cada hoja y
	numerarlas. Todo con lapicera y letra
	clara.
	Entregar el TP en la fecha solicitada.
VIA DE COMUNICACIÓN	Nos comunicamos a través del grupo de
	Whatsapp 5B
	gigenasergio@gmail.com
	gigotiassigio Ogitianisotti
FECHA DE ENTREGA	//2023

Reacciones de Oxido Reducción Marco Teórico

Actividad n°3 Reacciones de Oxido Reducción

Originalmente **oxidar** significó la transformación de un elemento en su óxido, por reacción con el O₂

$$C + O_2 \rightarrow CO_2$$

Después se amplió el concepto, abarcando también la conversión de un óxido en otro.

$$CO + 1/2 O_2 \rightarrow CO_2$$

En la industria se **reducían** óxidos metálicos al correspondiente metal. La palabra reducción se generalizo para representar la reacción inversa a la oxidación.

Por ejemplo; el carbón reduce al óxido cúprico cuando ambas sustancias mezcladas se calientan

$$C + 2 CuO \rightarrow CO_2 + Cu$$

Otra reducción del CuO

$$H_2 + CuO \rightarrow H_2O + Cu$$

Desde luego, entre las reducciones debe incluirse la transformación de un óxido en otro, con menor proporción de O

$$PbO_2 + C \rightarrow CO + PbO$$

En definitiva

Reducción

Un óxido se convierte en su elemento o en otro óxido menos oxidado

Oxidación

El elemento se convierte en su óxido o bien un óxido se oxida aún mas

Agentes oxidantes y agentes reductores

En las reacciones anteriores vimos que:


El óxido cúprico CuO, por acción del C, H_2 , etc. se Reduce. Estas sustancias que provocan la reducción de otra, se llaman **agentes reductores** o simplemente **reductores**

El O₂ produjo la oxidación del C; es entonces un **agente oxidante**. Como toda sustancia que provoca la oxidación de otra.

 $Reactivo + agente \ reductor \rightarrow Producto \ reducido$

 $Reactivo + agente oxidante \rightarrow Producto oxidado$

Si observamos cualquiera de las reacciones antes estudiadas vemos que:

- El C es un agente reductor, reduce al CuO
- El CuO es un agente oxidante, oxida al C

Reducción y Oxidación son dos aspectos de una misma reacción; representada por una ecuación de oxirreducción también llamada ecuación **redox**

Actividad Práctica

Siguiendo las reglas de asignación, calcule los estados de oxidación del C y del Cu en cada una de las moléculas que intervienen en la reacción de óxido reducción vista.

El **agente reductor**, provoca la disminución del n° est oxid del agente oxidante, mientras **aumenta** el propio.

El reductor que se oxida.

El **agente oxidante**, provoca el aumento del n° est oxid del agente reductor, mientras **disminuye** el propio.

Y el oxidante que se reduce.