IPET 132	2 PARAVACHASCA
ASIGNATURA	QUÍMICA ANALÍTICA 5to B
DOCENTE	GIGENA SERGIO
CURSO	5 AÑO B
TEMA	ESTEQUIOMETRIA
OBJETIVOS	Realizar cálculos estequiométricos.
	Trabajar adecuadamente con las
	reglas de la nomenclatura de compuestos
	inorgánicos.
	Hacer uso correcto de las magnitudes
	y unidades más utilizadas en la química
	analítica.
CRITERIOS DE EVALUACIÓN	 Tu correcta participación en los grupos de consulta. Comunicarte con tu docente para aclarar dudas. Prolijidad en la entrega de las actividades, pasar las actividades a la carpeta, colocar nombre en cada hoja y numerarlas. Todo con lapicera y letra clara. Entregar el TP en la fecha solicitada.
VIA DE COMUNICACIÓN	 Nos comunicamos a través del qrupo de Whatsapp 5B gigenasergio@gmail.com
FECHA DE ENTREGA	//2023

Estequiometria Marco Teórico

Actividad: Problemas de aplicación

Cálculo de la relación masa _ número de moles

¿Cuántos gramos de amoníaco se obtienen a partir de 15 mol de hidrógeno?
 Primero planteo la ecuación

$$N_2 + H_2 = NH_3$$

Segundo balanceo la ecuación

$$N_2 + 3 H_2 = 2 NH_3$$

Tercero calculo los PM de los reactivos y de / los productos obtenido/s

Cuarto establezco la relación estequiométrica masa _ moles adecuadas

Rta: Se obtienen 170 g de amoníaco

Cálculo de la relación masa _ masa

2) ¿Cuántos gramos de oxígeno se combinan con 460 gr de sodio para formar el óxido de sodio?

Primero planteo la ecuación y la balanceo

$$4 Na + O_2 = 2 Na_2 O$$

Segundo se calculan las masas estequiométricas correspondientes teniendo en cuenta las masas atómicas

Tercero planteo las relaciones estequiométricas masa _ masa pertinente, y resuelvo.

Rta Con 460 gr de Na reaccionan 160 gr de O₂

Cálculo de la relación masa _ volumen

3) La combustión completa del metano produce dióxido de carbono y agua. Averigüe cuántos dm³ de oxígeno, medidos en condiciones normales de presión y temperatura, se necesitan para la combustión completa de 0,16 kg de metano.

El volumen de un gas varía notablemente cuando se modifica la P y la T del sistema. Para facilitar las mediciones y para realizar una rápida comparación se adopta lo que se ha dado en llamar **condiciones normales de presión y temperatura.**

Se ha convenido en definir dos constantes:

- La presión normal: p₀ = 1 atm = 760 mmHg
- La temperatura normal: t₀= 0 °C = 273 K
- Consecuentemente v₀ el volumen molar normal, es el volumen medido en las condiciones normales de presión y temperatura CNPT (1atm y 0°C).

El mol de cualquier sustancia, en estado gaseoso y en CNPT, ocupa **22.4 l = 22.4 dm**³

Primero planteo la ecuación de combustión del metano y la balanceo.

$$CH_4 + 2 O_2 = CO_2 + 2 H_2 O$$

Segundo calculo el volumen estequiométrico del O₂ (en CNPT) y la masa estequiométrica de metano sabiendo que el PM_{CH4} es 16 gr

Tercero determino la relación estequiométrica masa _ volumen apropiada y resuelvo.

Rta: Para la combustión completa de 0,16 Kg de metano se requieren 448 dm³ de oxígeno.

Cálculo de la relación volumen _ volumen

4) Se hacen reaccionar 12 dm³ de hidrógeno medido en CNPT, con la cantidad necesaria de nitrógeno. ¿Cuál es el volumen de amoníaco que se obtiene medido en CNPT?

Primero planteo la reacción y la balanceo

$$N_2 + 3 H_2 = 2 NH_3$$

Segundo calculo el volumen estequiométrico de hidrógeno y de amoníaco, ambos medidos en CNPT

Tercero planteo la relación estequiométrica volumen _ volumen que corresponde y resuelvo.

Rta Se obtienen 8 dm3 de amoníaco medido en CNPT